20th EAROPH World Congress & Mayor's Caucus, 14-15 August '06

Sarawak Malaysia

Fly Ash for a 'greener' construction material

Dr. Djwantoro Hardjito Lecturer School of Engineering and Science Curtin University of Technology Miri, Sarawak, Malaysia

Overview

- Introduction
- Portland cement production & environmental issue
- Fly ash availability, problem and potential
- High volume fly ash concrete
- Fly ash-based geopolymer concrete
- Concluding remarks

What's wrong with cement concrete ?

- Many concrete structures start to deteriorate after 20 years, especially concrete in severe environment
- Cement production releases high amounts of CO₂ to the atmosphere (production of 1 ton of cement releases ~ 1 ton of CO₂). Cement production contributes 7% of the total world CO₂ emissions.
- Cement is one of the most energy-intensive materials of construction (after aluminium and steel). Production of 1 ton Portland cement requires ~ 4 GJ energy.

Regional and World Cement Production to Year 2010

(Source: World Cement Annual Review 1997, in million tonnes)

Region	1995	2000	2010	% (2010)
European Union	168.1	187.9	189.3	9.7
Other Europe	65.8	80.0	94.7	4.9
Former Soviet Union	58.1	80.3	128.2	6.6
North America	92.9	94.9	94.7	4.9
C/S America	89.4	106.6	145.0	7.5
Africa	64.8	74.3	85.5	4.4
Middle East	63.5	75.6	73.4	3.8
East Asia	623.4	732.7	844.3	43.4
S/SE Asia	161.2	219.1	279.2	14.4
Oceania	8.0	10.6	11.8	0.6
World Total	1396.1	1662.1	1946.1	100.0

Vision 2030: A vision for the concrete industry (CI, March 2001)

Concrete technologists are faced with the challenge of leading future development in a way that protects environmental quality while projecting concrete as a construction material of choice. Public concern will be responsibly addressed regarding climate change resulting from the increased concentration of global warming gases.

We need 'green' construction materials

- Durable (Roman concrete is still in good condition after 2000 years)
- Environmentally friendly (use less natural resources, need less energy to produce, minimise CO₂ emissions)
- Satisfy the necessary technical and economical considerations

Approach to lower the environmental impact

- Long Term: to reduce its rate of consumption → produce more durable, resource efficient, more energy efficient product !
- Short Term: practice the industrial ecology, i.e. recycling the waste or by-product
- 3R → Reduce, Reuse, Recycle

How to reduce the use of Cement

Partially replace the use of cement in concrete

Example: high volume fly ash concrete

Develop alternative binder materials

Example: fly ash-based Geopolymer concrete

Fly Ash

- Fly ash: 'the finely divided residue that results from the combustion of ground or powdered coal ...'
- In the near future, fly ash production is steadily increasing → power produced by burning coal is remain the cheaper alternative & high quality coal is available abundantly worldwide
- Total yearly production 600 million tons + the amount that has been stockpiled over years
- So far, only disposed in landfills → may cause threat to the environment

Estimated Coal Ash Production and Utilization in 2000

(Source: VM Malhotra, 2004)

Country	Production, Million tonnes	Utilization, Million tonnes
China	>200	>15
India	>80	5%
USA	>60	10%
Russia	60	5
Germany	30	12
UK	10	10

High volume fly ash concrete

- Use 50-60% by mass of fly ash of cementitious materials
- Use low water content, generally less than 130 kg/m³
- Cement content ~ 200 kg/m³
- Low water to cementitious ratio

Typical Composition HVFA concrete pavement in India

Particulars	
Portland Cement	225 kg/m ³
Fly Ash	225 kg/m ³
Coarse Aggregate	1283 kg/m ³
Fine Aggregate	547 kg/m ³
Plasticiser	2.25 L/m ³
W/cem	0.32

Source: J.P. Desai, 'Construction and Performance of High Volume Fly Ash Concrete Roads in India', American Concrete Special Publication 221-36, 2004.

The first road pavement in India using High Volume Fly Ash Concrete (Courtesy of JP Desai, Gujarat Ambuja Cement Ltd, India, 2004)

Typical Performance of HVFA concrete pavement in India

Compressive Strength, MPa	
1-day	9.2
2-days	19.5
7-days	25.5
28-days	40.0
Flexural Strength, MPa	6.8
28-days	
Permeability	563
Rapid Chloride Permeability Test (ASTM C 1202), coulombs	

Source: J.P. Desai, 'Construction and Performance of High Volume Fly Ash Concrete Roads in India', American Concrete Special Publication 221-36, 2004.

Fly ash-based Geopolymer concrete

- Source material containing high Silicon (Si) and Aluminium (AI), for example low calcium fly ash, is reacted with high alkaline liquid (for example: combination of potassium/sodium hydroxide & potassium/sodium silicate solutions).
- Heat (steam curing) may assist as reaction accelerator.

Fly Ash-based Geopolymer Concrete: Process

- Alkaline solutions induce the Si and Al atoms in the source materials (for example, low calcium fly ash) to dissolve
- Gel formation (or polymerisation) assisted by applied heat
- Gel binds the loose coarse aggregate, fine aggregate, and un-reacted source material → Geopolymer concrete

Fly Ash-based Geopolymer Concrete: Properties

- Excellent short and long term properties
- Low shrinkage and low creep
- Excellent resistance to sulfate exposure
- Structural members behave as those of Portland cement concrete
- Possible to manufacture using the common technology

Application of Geopolymer Concrete in Structural Elements

Mayor's Caucus 2006

Concluding remarks

- One most possible way to make concrete 'greener' construction material → to reduce the use of Portland cement.
- Fly ash has potential to substantially replace (partly or totally) the amount of Portland cement needed for making concrete
- HVFA and Geopolymer concrete are among the examples
- Thus, fly ash may play important role to make concrete 'greener'.

Thank you very much for your attention !

20th EAROPH World Congress & Mayor's Caucus 2006