The Measurement of Loan Termination Probabilities and Reverse Mortgage Insurer’s Risks for the Korean Reverse Mortgage *

Seungryul Ma
Research Fellow, Korea Housing Finance Corporation
E-mail: srma2000@daegu.ac.kr

Deokho Cho**
Professor, Department of Public Administration, Daegu University
E-mail: chodh@daegu.ac.kr

Yunhee Seo
Doctoral Course, Department of Urban Studies, Daegu University
E-mail: yunhee@daegu.ac.kr

Seongman Park
Doctoral Course, Department of Public Administration, Daegu University
E-mail: Hong3363@hanmail.net

Abstract: Korea has experienced the rapid aging society like most developed countries. Reverse mortgage actually is an important policy alternative to resolve the income shortage of elderly people through the liquidation of housing assets and the Korean government recently introduced the reverse mortgage system. However, it requires a long-term contract between lenders and borrowers. Therefore, the loan termination probability is one of key factors for implementing reverse mortgage programs successfully. The goal of this paper is to set up an appropriate mortality rate in order to figure out the loan termination rates and the reverse mortgage insurer’s risk. The basic model of reverse mortgage uses the 1.3 times of female's mortality rates as the loan termination probabilities and 100 years old as its age limitation like the U.S. HECM program because no termination experience is available in case of the initial premium setting. In order to figure out an appropriate loan termination probability and estimate the insurer’s risk, this paper generates two different loan termination probabilities to reflect the real circumstance and also assumes 110-year life spans for confirming reverse mortgage insurer’s risks. It notes that two different loan termination probabilities and the extension of maximum life span do not effect on the changes of the maximum levels of monthly payments considerably. So, we can conclude that the assumption of 1.3 times mortality rate can be applied into the Korean reverse mortgage market and can also be applied to other countries’ reverse mortgage programs for setting the initial actuarial program.

1. Introduction

Korea has experienced the rapid aging society like most developed countries. Reverse mortgage actually is an important policy alternative to resolve the income shortage of elderly people through the liquidation of housing assets and the Korean government introduced the reverse mortgage system for the elderly at July 12, 2007. However, it requires a long-term contract between lenders and borrowers and the loan termination probability is one of the most important key factors for implementing reverse mortgage programs successfully. It eventually provides the widest array of cash-advance choices like tenure, term, credit lines, and their combinations. If borrowers select a tenure plan, they will receive a pre-determined amount of funds every month until they die, sell their home, or permanently move out. Therefore, termination probability is one of the most important factors in setting the actuarial model of reverse mortgages because it is directly related with the period of a reverse mortgage loan. U.S. HECM (Home Equity Conversion Mortgage) program, which is the first program which is guaranteed by the government, assumes that the borrower mortality rate is equal to 1.3 times of the age-specific female’s mortality rate.

* This paper was financed by the Korea Rural Community & Agriculture Corporation and is revised from the paper which was presented in ACSP & AESOP joint Conference, Chicago, July 9, 2008.

** Corresponding author
that the 1.3 times mortality assumption underestimates termination probabilities at the younger ages, and overestimates them at the older ages. To alleviate these problems, Ma and Deng (2006) used male’s mortality rate as female’s termination rate in their analysis.

Three risk factors of reverse mortgage are loan termination probabilities, interest rate changes, and uncertainty of future housing price. However, the Korean government does not have the empirical data on the risk factors of reverse mortgage. Eventually the Korean reverse mortgage adopts the 1.3 times mortality assumption of the HECM in setting the initial program. And then the goals of this study are to set an appropriate loan termination probability and to figure out the insurer’s risk in the Korean reverse mortgage market where the reverse mortgage is introduced firstly. In order to do that, it is necessary to evaluate the possible effects resulting from the assumption of loan termination in advance. Moreover, reverse mortgage backed securities also should be issued in order to guarantee the continuous reverse mortgage payment to borrowers.

KNSO (Korea National Statistical Office) released 2003 mortality table in the end of 2005 and did 2004 and 2005 mortality tables in December 2006. The 2007 mortality table is expected to be announced in the end of 2008. Therefore, in order to decide the termination probabilities of 2007 reverse mortgage actuarial model, this study should forecast 2007 mortality rates using these released data.

The Korean government-insured reverse mortgage assumes that the mortality rates of aged 100 and above became 1.0 (the oldest possible survival age is 100). This study will forecast 2007 mortality rates using Lee-Carter model and decide the 2007 loan termination probabilities according to 1.3 times mortality assumption. And then this paper generates two different loan termination probabilities reflecting the results of empirical studies in the U.S. HECM program. Each model also includes the assumption which the maximum life span is extended to 110 years old for confirming the magnitude of reverse mortgage insurer’s risks resulting from borrowers’ longevity. The second section notes a basic actuarial model of reverse mortgage, section 3 figures out the loan termination probabilities, section 4 forecasts the mortality rates and analyzes the insurer’s risks resulting from loan termination probability assumptions.

2. Basic Actuarial Model of Reverse Mortgage System

The Korean government introduced a reverse mortgage system which borrowers are required to pay 2% of housing values as an upfront mortgage insurance premium (UP_0) and a monthly mortgage insurance premium ($tmip$) according to the annual rate of 0.5% of the outstanding loan balances in July 12, 2007. And the maximum amounts of constant monthly payments are evaluated using trial and error method under the condition that the present values of expected claim losses ($PVEL$) are equal to that of insurance premiums ($PVMIP$) as Eq(1).

\[
PVMIP = UP_0 + \sum_{t=0}^{T(a)} \left(\frac{mip_t \cdot p_{a,t}}{(1+i)^t} \right)
= \sum_{t=1}^{T(a)} \left(\max \left[(OLB_t - H_t) \cdot q_{a,t+1}, 0 \right] \cdot p_{a,t} \right) = PVEL
\]

Where

- $PVMIP = \text{present value of total mortgage insurance premiums at time } t=0$
- $PVEL = \text{present value of total claim losses at time } t=0$
- $UP_0 = \text{upfront mortgage insurance premium at time } t=0$
- $T(a) = \text{the number of months that borrowers with age } a \text{ will continue to receive the annuity payments until they reach to age 100}$
- $mip_t = \text{monthly mortgage insurance premiums at time } t$
- $mip_t = (OLB_{t-1} + \text{payment}) \cdot m$
- $\text{payment} = \text{constant monthly payment}; \ m = \text{monthly premium rate}$
- $OLB_t = \text{the outstanding loan balance at time } t$
- $OLB_t = \left([OLB_{t-1} + \text{payment} + mip_t] (1+i) \right)$
- $p_{a,t} = \text{the probability that a borrower of age } a \text{ will survive at age } a+t$
- $i = \text{expected interest rate}$
- $H_t = \text{expected housing values at time } t$
- $H_t = H_0 \cdot (1+g)^t; \ g = \text{mean value of housing price growth rate}$
3

\[q_{a+t} = \text{the probability that a loan will be terminated at age } a + t \]

According to Ma, Kim, and Lew (2007), if this study assumes that the values of \[U_{P_0} = H_0 \times 2\%, \ m = 0.5\% / 12, \]
\[i = 7.5\%, \ g = 3.5\%, \] and \[q_{a+t} = 1.3 \text{ times of female’s mortality rate, it can measure the present values of total mortgage insurance premiums (PVMIP) and those of total claim losses (PVEL) at time } t=0 \text{ and determine the maximum level of constant monthly payments (annuities) like Table 1.} \]

Table 1. Determining Maximum Level of Monthly Payment (unit: Korean Won ($1/930))

<table>
<thead>
<tr>
<th>PVEL</th>
<th>PVMIP</th>
<th>Net Liability</th>
<th>Constant Monthly Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,605,962</td>
<td>11,606,481</td>
<td>-519</td>
<td>1,067,950</td>
</tr>
</tbody>
</table>

Note: 1. Net Liability = PVEL - PVMIP
 2. Borrower’s age: 70
 3. Initial housing value (H): 300 millions won
 4. 930 won in Korea is about 1.0 dollar in the U.S.

This study can confirm that the maximum level of constant monthly payment is 1,067,950 won.

3. Loan Termination Probabilities of Reverse Mortgage

This study can measure loan termination probabilities and loan survival probabilities like Eq (2).

\[s_{a,t} = \prod_{j=2}^{t} (1 - d_{a+j}) \quad (2) \]

where \[s_{a,t} \] = loan survival probability in time \(t \) of borrower’s age \(a \)

\[\prod \] = product operator

\[d_{a+t} \] = loan termination probability in borrower’s age \(a + t \)

Loan survival probabilities (\(s_{a,t} \)) in Eq (2) can be measured as follows (Szymanoski, Enriquez, and DiVenti, 2006).

\[s_{a,0} = 1.0, \]

\[s_{a,t} = s_{a,0} \cdot (1 - d_{a+t}), \]

\[s_{a,2} = s_{a,1} \cdot (1 - d_{a+2}) = s_{a,0} \cdot (1 - d_{a+t}) \cdot (1 - d_{a+2}) = \prod_{j=1}^{2} (1 - d_{a+j}), \]

and it can be generalized as follow;

\[s_{a,t} = s_{a,t-1} \cdot (1 - d_{a+t}) = \prod_{j=1}^{t} (1 - d_{a+j}). \]

Loan survival probabilities are used for evaluating both the present values of expected claim losses and those of expected insurance premiums in the actuarial model of reverse mortgage. Yet, loan termination probabilities are used for evaluating the present values of expected claim losses. The HECM measured the expected insurance premium and claim losses using loan survival probabilities \(s_{a,t} \) which are measured by the assumption which the loan termination probabilities \(d_{a+t} \) at age \(a+t \) are the 1.3 times of female mortality rates (30% of female mortality are assumed as the advanced repayment rates by the other reasons except the death of borrowers). Based upon the condition which the present values of expected insurance premium are equal to those of expected claim losses, the HECM decide the maximum level of monthly payment for borrowers. In order to apply these annual loan survival probabilities (\(S_{i,j} \)) data to the basic actuarial model of reverse mortgage, the HECM program converted these data into the monthly loan
survival probabilities \(P_{a,t} \) by using the geometrical interpolated methods (Szymanoski, 1990) as follows;

\[
P_{a,t} = \left[S_{i,j} \cdot \left(\frac{S_{i,j+1}}{S_{i,j}} \right)^{1 \over m} \right]^{1+m}
\]

where
- \(i = \) initial age in years = \{62, 63, ..., 99\}
- \(j = \) attained age in full years = \{\(i \), \(i+1 \), ..., 100\}
- \(a = \) initial age in months = 12\(i \)
- \(t = \) attained age minus initial age in months = 12(\(j - I \)) + \(r \)
- \(r = \) months between attained ages \(j \) and \(j + I = \{0, 1, ..., 11\} \)
- \(m = \) move-out rate expressed as a decimal = 0.3

If this paper simply follows the method of HECM, the monthly loan survival rates (termination rates) might be a little higher (lower) than those of their actual values because the annual mortality rates of KNSO represent the median value of each age interval. Due to this reason, this study used the smoothed Hodrick-Prescott (HP) trends for interpolating the value of mortality rates, following Ma and Deng (2006). The HP filter is a two-sided linear filter that computes the smoothed series \(s \) of \(y \) by minimizing the variance of \(y \) around \(s \), subject to a penalty that constrains the second difference of \(s \). That is, the Hodrick-Prescott filter chooses \(s \) to minimize \(\sum_{t=1}^{T} (y_t - s_t)^2 + \lambda \sum_{t=1}^{T} [(s_{t+1} - s_t) - (s_t - s_{t-1})]^2 \)

The penalty parameter \(\lambda \) controls the smoothness of the series \(s \). The larger the \(\lambda \), the smoother the \(s \). As \(\lambda \to \infty \), \(s \) approaches a linear trend (Hodrick and Prescott, 1997).

4. Methodology, Data and Forecasting Mortality Rates

4-1. Methodology

The model of Lee-Carter for forecasting mortality rates combines a demographic model of mortality with time series methods of forecasting like Eq(4).

\[
\ln(m_{x,t}) = a_x + b_x k_t + \varepsilon_{x,t} \quad (x = 1,2,\ldots,n; t = 1,2,\ldots,T)
\]

\[
k_t \sim \mathcal{I}(d)
\]

but, \(\sum_{x=1}^{n} b_x = 1, \quad \sum_{t=1}^{T} k_t = 0 \)

where
- \(m_{x,t} = \) mortality rate at age group \(x \) in year \(t \)
- \(a_x = \) average pattern of mortality by age group across years
- \(b_x = \) the relative change slope at each age group by the change of mortality rates
- \(k_t = \) mortality index at time \(t \)
- \(\varepsilon_{x,t} = \) residual at age group \(x \) and time \(t \)

In equation (4), the estimators of \(a_x \) are given by the sample mean of the natural logs of the mortality rates like Eq (5).
The singular value decomposition method is used to estimate the parameters b_x and k_x. The estimation of k_x is obtained by summing the deviations of the logs of the mortality rates across all the age groups like Eq (6).

$$ k_x = \sum_{t=1}^{n} [\ln(\mu_{t,x}) - a_x] $$ \hspace{1cm} (6)

And b_x are estimated regressing the deviations of the logs of the mortality rates with the initial estimation of k_x like Eq (7).

$$ b_x | \text{LS}[\ln(\mu_{t,x}) - a_x] \text{ on } k_x. $$ \hspace{1cm} (7)

A random walk model with drift (that is ARIMA (0,1,0) model) in general is used for forecasting mortality index (k_x). However, this study found that ARIMA(0,1,0) model is inadequate for forecasting k_x series in Korea because the first differenced time series of k_x was non-stationary. And this study used Holt-Winters’ no seasonal exponential smoothing method for forecasting mortality index. Smoothed time series \hat{k}_x in HW no seasonal exponential smoothing method is like Eq (8).

$$ \hat{k}_{t+y} = a + y \cdot b $$ \hspace{1cm} (8)

where $a =$ intercept, $b =$slope

We can get the values of a_x and b_x at time t as follows.

$$ a_x = \alpha + (1 - \alpha)(a_{x,t} + b_{x,t}) \quad 0 < \alpha < 1 $$ $$ b_x = \beta(\alpha x, y) + (1 - \beta)b_{x,t} \quad 0 < \beta < 1 $$ \hspace{1cm} (9)

Now, we can forecast the value of mortality index (k_x) after period y from time T as follows.

$$ \hat{k}_{T+y} = a_t + y \cdot b_t $$ \hspace{1cm} (10)

4-2. Data

It is necessary to use the time series of mortality rates of year based age group in the life tables for males and females in order to forecast future mortality rates using the Lee-Carter model. However, this study forecasts the future mortality rates and the loan termination probabilities of reverse mortgage, using the time series data of the simplified 5-year age interval life table from 1971 to 2005 (35 years) which were released by Korea National Statistical Office (KNSO) because there is no sufficient time series data on the year based mortality rates. 5-year age interval mortality rates can be expressed like Eq (11).

$$ sQ_x = \frac{D}{L_s} $$ \hspace{1cm} (11)

where $sQ_x =$ Mortality rates by 5-year age intervals
\[D_x = \sum D_x \quad (D_x = \text{the number of deaths of each age}) \]

\[L_x = \text{The number of survivors of each age} \]

There are 17 age groups like Table 2 but this study will forecast the age groups from age group 18\(^{th}\) to 22\(^{th}\).

Table 2. Definition of 5 year interval age groups on the male and female mortalities

<table>
<thead>
<tr>
<th>Age group: x symbol</th>
<th>Age range</th>
<th>Age group: x symbol</th>
<th>Age range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q00</td>
<td>Age 0</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Q01</td>
<td>Age 01-04</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Q05</td>
<td>Age 05-09</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Q10</td>
<td>Age 10-14</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Q15</td>
<td>Age 15-19</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Q20</td>
<td>Age 20-24</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Q25</td>
<td>Age 25-29</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Q30</td>
<td>Age 30-34</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Q35</td>
<td>Age 35-39</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Q40</td>
<td>Age 40-44</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Q45</td>
<td>Age 45-49</td>
<td>22</td>
</tr>
</tbody>
</table>

Figure 1 shows the trends of mortality rates for males and females from 1971 to 2005. It notes that the mortality rates of the male and female from 13\(^{th}\) to 17\(^{th}\) age group go downward by passage of time.

Figure 1. Trends of mortality rates for males and females

4-3. Forecasting mortality rates

Table 3 shows the estimated values of \(a_x \) and \(b_x \) for females by age group \(x \), based upon Lee-Carter model.

Table 3. Estimated values of \(a_x \) and \(b_x \) for females
<table>
<thead>
<tr>
<th>age group (x)</th>
<th>a_x</th>
<th>b_x</th>
<th>age group (x)</th>
<th>a_x</th>
<th>b_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.25151</td>
<td>0.082721</td>
<td>12</td>
<td>-3.74124</td>
<td>0.047554</td>
</tr>
<tr>
<td>2</td>
<td>-5.40542</td>
<td>0.087626</td>
<td>13</td>
<td>-3.36685</td>
<td>0.043562</td>
</tr>
<tr>
<td>3</td>
<td>-5.81141</td>
<td>0.092768</td>
<td>14</td>
<td>-2.92151</td>
<td>0.038931</td>
</tr>
<tr>
<td>4</td>
<td>-6.11251</td>
<td>0.086615</td>
<td>15</td>
<td>-2.42597</td>
<td>0.031782</td>
</tr>
<tr>
<td>5</td>
<td>-5.65849</td>
<td>0.076238</td>
<td>16</td>
<td>-1.90949</td>
<td>0.022911</td>
</tr>
<tr>
<td>6</td>
<td>-5.40657</td>
<td>0.076189</td>
<td>17</td>
<td>-1.39738</td>
<td>0.017218</td>
</tr>
<tr>
<td>7</td>
<td>-5.28883</td>
<td>0.072537</td>
<td>18</td>
<td>-0.96424</td>
<td>0.017218</td>
</tr>
<tr>
<td>8</td>
<td>-5.1114</td>
<td>0.064031</td>
<td>19</td>
<td>-0.51868</td>
<td>0.017218</td>
</tr>
<tr>
<td>9</td>
<td>-4.8437</td>
<td>0.056021</td>
<td>20</td>
<td>-0.20371</td>
<td>0.017218</td>
</tr>
<tr>
<td>10</td>
<td>-4.49572</td>
<td>0.053469</td>
<td>21</td>
<td>-0.01013</td>
<td>0.017218</td>
</tr>
<tr>
<td>11</td>
<td>-4.11521</td>
<td>0.049828</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 notes the sum of estimated parameter b_x from age group 1th to 17th satisfying the condition of $\sum_{x=1}^{17} b_x = 1$. The values of a_x and b_x after age group 17th are used for forecasting the future mortality rates. Following Rotger and Estany (2002), this study forecasted the mortality rates after the age group 17th, using a fixed value of b_x like Table 3. Meanwhile, this study generated the values of a_x considering the real mortality rates in the 2005 life table of KNSO which has 5-year age intervals. This life table shows the real mortality rates from age group 18th to age group 22th, respectively. Table 4 shows mortality indexes estimated using data from 1971 to 2005 and the projected 2006 and 2007 mortality indexes.

Table 4. Mortality index (k_r) for females

<table>
<thead>
<tr>
<th>year</th>
<th>k_r</th>
<th>year</th>
<th>k_r</th>
<th>year</th>
<th>k_r</th>
<th>year</th>
<th>k_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>8.781195</td>
<td>1989</td>
<td>-0.96922</td>
<td>1999</td>
<td>-10.0677</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It also notes that the sum of estimated parameter k_r from 1971 to 2005 satisfies the condition of $\sum_{t=1}^{T} b_t = 0$. This study forecasts 2006 and 2007 mortality indexes using HW exponential smoothing method and Table 5 shows the results of estimating parameters.

Table 5. Results of parameter estimations of mortality rates

<table>
<thead>
<tr>
<th>k_r for females</th>
<th>α</th>
<th>β</th>
<th>a_r</th>
<th>b_r</th>
<th>SSR</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.93</td>
<td>-14.9288</td>
<td>-0.5936</td>
<td>0.5853</td>
<td>0.1293</td>
</tr>
</tbody>
</table>

Note: SSR = sum of squared residuals; RMSE = root mean squared error.

Figure 2 shows the estimated and forecasted values of a_x and b_x for females using data from 1971 to 2005.
Figure 2. estimated values of $a(x)$ and $b(x)$ for females

Figure 3 shows the estimated and forecasted values of $k(x)$ for females in the same period.

Figure 3. Estimated values of $k(x)$ for females

Now, this study can forecast the values of 5 year interval mortality rates for females in 2007, using the estimated and forecasted values of $a(x)$, $b(x)$, and $k(x)$. Figure 4 shows 2005 and 2007 mortality rates for females (mort05 and mort07) and 1.3 times of 2007 females’ mortality rates (mort07*130%) and 1.25 times of 2005 females’ mortality rates (mort05*125%).

Loan Termination Probabilities

Figure 4. Comparison of mortality rates from age group 14 to 22

Figure 4 shows that mortality rates in 2007 are slightly smaller than them in 2005 as expected. It also notes that the
values of 1.25 times of 2005 females’ mortality rates are located just below those of 1.3 times of 2007 females’ mortality rates. So, we can see that there are no significant differences between these two mortality rates. Consequently the values of 1.25 times of 2005 females’ mortality rates (mort05*125%) are appropriate as the proxy variable of the loan termination probabilities in the actuarial model setting of the Korean reverse mortgage market where the reverse mortgage is just introduced and there are no periodical data on the loan termination probabilities. From now on, we can use the values of 1.25 times of 2005 females’ mortality rates as loan termination probabilities. In other words, this paper assumes that the values of 1.25 times of 2005 females’ mortality rates have the same values of 1.3 times of 2007 females’ mortality rates (mort07*130%).

5. Analysis of Insurer’s Risks

This study analyzed reverse mortgage insurer’s risks resulting from loan termination probabilities in the case of borrowers’ age 70. Based upon the above analysis, it used the values of 1.25/1.30 times of females’ mortality rates in 2005 as a proxy variable of each year mortality rate for females in 2007 because there was no data on the mortality rates in July 12, 2007 when the reverse mortgage was introduced. In order to convert this 2007 female mortality rates into monthly mortality rates, this study used the smoothed HP filter. As the previous description, the HECM program assumed that the probability of prepayment of reverse mortgage except the death of borrowers is 0.3 times of female’s mortality rates. Therefore, the total loan termination probabilities of reverse mortgage loans became 1.3 times of female’s mortality rates. However, the recent empirical studies noted that this loan termination assumption did not reflect the actual reverse mortgage market situations. Chow, Szimanoski, and DiVenti (2000), Rodda, Youn, Ly, Rodger, and Thompson (2003), and Szimanoski, Enriquez, and DiVenti (2006) argued that it under-predicted loan termination probability at younger ages, and over-predicted them at older ages in terms of the periodical aspect. In order to solve the above problems, a quadratic polynomial trend model is used for generating new loan termination probabilities. At first, it estimated 2007 female’s mortality rates using quadratic polynomial trend model and then generated two different loan termination probabilities after modification of the parameters. More specifically it modified that the values of loan termination probabilities became greater than the values of 1.3 times mortality rate assumption at the younger ages and this study modified loan termination probabilities became lower than the values of 1.3 times mortality rate assumption at the older ages as follows. Table 6 shows the estimated parameters of 2007 female’s mortality rates (qₜ) and that of two different mortality rates (qₜ_mod1 and qₜ_mod2) for evaluating the risks of reverse mortgages.

<table>
<thead>
<tr>
<th>loan termination probabilities</th>
<th>β₀</th>
<th>β₁</th>
<th>β₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>qₜ</td>
<td>0.011891</td>
<td>0.001274</td>
<td>0.000269</td>
</tr>
<tr>
<td>qₜ_mod1</td>
<td>0.040000</td>
<td>0.000500</td>
<td>0.000265</td>
</tr>
<tr>
<td>qₜ_mod2</td>
<td>0.070000</td>
<td>-0.002000</td>
<td>0.000315</td>
</tr>
</tbody>
</table>

Note: quadratic polynomial trend model: \(yₜ = β₀ + β₁t + β₂t² + eₜ \) \((t = 0, 1, 2, \cdots, T) \)

Figure 5 shows \(qₜ \), \(qₜ *1.3 \), \(qₜ_mod1 \), and \(qₜ_mod2 \), respectively.
Figure 5. Comparison of 4 loan termination probabilities

Figure 5 shows that the values of new generated q_{x_mod1} and q_{x_mod2} present more realistic shapes in the loan termination probabilities reflecting the results of recent empirical studies as the above description. Based upon the values of q_x, q_x_mod1, and q_x_mod2, it measured the levels of monthly payments. And it also analyzes the effect of maximum life span which the oldest possible survival age is extended to 110 years old. Table 7 shows the values of monthly payments which satisfies the actuarial equivalence principle.

Table 7. Monthly payments which satisfies the actuarial equivalence principle

<table>
<thead>
<tr>
<th></th>
<th>PVEL</th>
<th>PVMIP</th>
<th>Net Liability</th>
<th>Monthly payment</th>
<th>Ratio to Basic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_x</td>
<td>12,264,818</td>
<td>12,265,713</td>
<td>-895</td>
<td>914,850</td>
<td>0.899</td>
</tr>
<tr>
<td>q_x_mod1</td>
<td>11,150,677</td>
<td>11,151,652</td>
<td>-975</td>
<td>1,002,180</td>
<td>0.985</td>
</tr>
<tr>
<td>q_x_mod2</td>
<td>10,450,424</td>
<td>10,450,876</td>
<td>-451</td>
<td>1,056,640</td>
<td>1.038</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PVEL</th>
<th>PVMIP</th>
<th>Net Liability</th>
<th>Monthly payment</th>
<th>Ratio to Basic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_x</td>
<td>12,277,079</td>
<td>12,277,386</td>
<td>-307</td>
<td>906,340</td>
<td>0.890</td>
</tr>
<tr>
<td>q_x_mod1</td>
<td>11,161,383</td>
<td>11,161,917</td>
<td>-533</td>
<td>995,060</td>
<td>0.978</td>
</tr>
<tr>
<td>q_x_mod2</td>
<td>10,460,573</td>
<td>10,461,086</td>
<td>-513</td>
<td>1,049,860</td>
<td>1.031</td>
</tr>
</tbody>
</table>

Note: 1. Borrower’s age: 70
2. Initial housing value: 300,000,000 won (930 won in Korea is about 1.0 dollar in the U.S.)
3. Basic model: Maximum life span is age 100 and loan termination rate is q_x_mod1

Under the condition of the actuarial equivalence principle the basic model of Korean reverse mortgage (the age limitation is 100 and loan termination probability is (q_x_mod1), presents 1,017,810 won in the maximum monthly payment amount, and q_x_mod1 and q_x_mod2 also note 1,002,180 (98% of basic model) and 1,056,640 (104%) respectively. The modified models (q_x_mod1 and q_x_mod2; which have 110 of the age limitation), also show the
amounts of maximum monthly payment and their ratios to the basic model. This analysis confirms that there are no
considerable differences in the values of monthly payments between the basic model (\(q_x \times 1.3 \)) and the modified models
(\(q_x_{\text{mod1}} \) and \(q_x_{\text{mod2}} \)). It means that the extension of maximum life span does not change the maximum levels of
monthly payments significantly.

In order to figure out the differences of the insurer’s risks according to the assumptions of loan termination probabilities,
this study analyzes the magnitude of present values of insurer’s net insurance liabilities. Table 8 shows the net liabilities
among the different models.

Table 8. Comparison of insurer’s net insurance liabilities

<table>
<thead>
<tr>
<th>Maximum life span: age 100</th>
<th>PVEL</th>
<th>PVMIP</th>
<th>Net Liability</th>
<th>Monthly payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_x)</td>
<td>17,994,784</td>
<td>12,913,400</td>
<td>5,081,383</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x \times 1.3)</td>
<td>11,819,186</td>
<td>11,819,473</td>
<td>-287</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x_{\text{mod1}})</td>
<td>11,777,269</td>
<td>11,225,587</td>
<td>551,682</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x_{\text{mod2}})</td>
<td>9,184,082</td>
<td>10,300,221</td>
<td>-1,116,138</td>
<td>1,017,810</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum life span: age 110</th>
<th>PVEL</th>
<th>PVMIP</th>
<th>Net Liability</th>
<th>Monthly payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_x)</td>
<td>18,456,075</td>
<td>12,986,275</td>
<td>5,469,800</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x \times 1.3)</td>
<td>11,985,117</td>
<td>11,839,254</td>
<td>145,863</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x_{\text{mod1}})</td>
<td>12,071,014</td>
<td>11,270,496</td>
<td>800,518</td>
<td>1,017,810</td>
</tr>
<tr>
<td>(q_x_{\text{mod2}})</td>
<td>9,417,449</td>
<td>10,335,669</td>
<td>-918,219</td>
<td>1,017,810</td>
</tr>
</tbody>
</table>

Table 8 shows the fact that the values of reverse mortgage insurer’s net insurance liabilities would become both positive
(+) or negative (-) according to the assumptions of loan termination probabilities, comparing these results with that of
basic model. However, the differences of net insurance liabilities are not large considerably.

6. Conclusion

The reverse mortgage program becomes popular recently because the Korea has experienced the rapid aging society and
the pension and other social security systems for the elderly are weak relatively. And the Korean government introduced
the government-insured reverse mortgage system in July 12, 2007.

The tenure reverse mortgage loans will be terminated when the borrower dies leaves her home permanently or simply
chooses to pay off the outstanding loan balances. The HECM program assumes that the probability of other prepayment
except the death of borrower is 0.3 times of female’s mortality rates. Therefore, the total loan termination probability of
reverse mortgage loans assumes to be 1.3 times of female’s mortality rates. This study aimed to figure out appropriate
loan termination probabilities and evaluate the insurers’ risk in the Korean reverse market where the reverse mortgage
program is introduced firstly and there are no empirical data on the loan termination probabilities and insurers’ risk.
Using the model of government-insured reverse mortgage (HECM) of U.S.A., this study forecasted 2007 mortality rates
for females using Lee-Carter model and then generated two different loan termination probabilities in order to resolve
the problems of previous studies and to reflect the real reverse mortgage market. It also evaluates the net liabilities
among different models. For generating new loan termination probabilities, this study estimated 2007 female’s mortality
rates using quadratic polynomial trend model and then generated two different loan termination probabilities after
modification of the parameters. And then this study also conducted additional analysis for confirming the effect of
maximum life span. This study used the quadratic polynomial trend model for forecasting the values of loan termination
probabilities after age 100. It noted that there were no considerable differences in the values of monthly payments
among the basic model (\(q_x \times 1.3 \), \(q_x_{\text{mod1}} \), and \(q_x_{\text{mod2}} \) and also figured out that the extension of maximum life
span did not effect on the change of the maximum levels of monthly payments considerably.

To confirm insurer’s risks due to the change of loan termination probabilities, this study measured the present values of
insurer’s net insurance liabilities. This study confirmed that there were no considerable differences in the values of
insurer’s net liabilities among the models. Consequently, although 1.3 times mortality rate assumption could not explain
real world situation, this study could find that 1.3 times assumption would not violate the condition of actuarial
equivalence principle significantly. Moreover, $q_{x_{mod1}}$ and $q_{x_{mod2}}$ contributed to resolve these problems but the analysis results also did not change significantly. So, this study can conclude that the assumption of 1.3 times mortality rate can get external volatility in the country which has no loan termination probabilities and insurers’ risk because the reverse mortgage program is introduced firstly. Furthermore, this study also can contribute to forecast the mortality rates, loan termination probabilities, and insurers’ risks resulting from the assumptions of loan termination probabilities for setting the new reverse mortgage program. Its results can be applied to other countries’ program where reverse mortgage is introduced to solve the income shortage of the elderly homeowners.

References

